Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
BMC Med ; 20(1): 422, 2022 11 02.
Article in English | MEDLINE | ID: covidwho-2098343

ABSTRACT

BACKGROUND: Currently, there is limited evidence about the long-term impact on physical, social and emotional functioning, i.e. health-related quality of life (HRQL) after mild or moderate COVID-19 not requiring hospitalization. We compared HRQL among persons with initial mild, moderate or severe/critical COVID-19 at 1 and 12 months following illness onset with Dutch population norms and investigated the impact of restrictive public health control measures on HRQL. METHODS: RECoVERED, a prospective cohort study in Amsterdam, the Netherlands, enrolled adult participants after confirmed SARS-CoV-2 diagnosis. HRQL was assessed with the Medical Outcomes Study Short Form 36-item health survey (SF-36). SF-36 scores were converted to standard scores based on an age- and sex-matched representative reference sample of the Dutch population. Differences in HRQL over time were compared among persons with initial mild, moderate or severe/critical COVID-19 using mixed linear models adjusted for potential confounders. RESULTS: By December 2021, 349 persons were enrolled of whom 269 completed at least one SF-36 form (77%). One month after illness onset, HRQL was significantly below population norms on all SF-36 domains except general health and bodily pain among persons with mild COVID-19. After 12 months, persons with mild COVID-19 had HRQL within population norms, whereas persons with moderate or severe/critical COVID-19 had HRQL below population norms on more than half of the SF-36 domains. Dutch-origin participants had significantly better HRQL than participants with a migration background. Participants with three or more COVID-19 high-risk comorbidities had worse HRQL than part participants with fewer comorbidities. Participants who completed the SF-36 when restrictive public health control measures applied reported less limitations in social and physical functioning and less impaired mental health than participants who completed the SF-36 when no restrictive measures applied. CONCLUSIONS: Twelve months after illness onset, persons with initial mild COVID-19 had HRQL within population norms, whereas persons with initial moderate or severe/critical COVID-19 still had impaired HRQL. Having a migration background and a higher number of COVID-19 high-risk comorbidities were associated with worse HRQL. Interestingly, HRQL was less impaired during periods when restrictive public health control measures were in place compared to periods without.


Subject(s)
COVID-19 , Quality of Life , Adult , Humans , Quality of Life/psychology , Prospective Studies , COVID-19/epidemiology , COVID-19 Testing , SARS-CoV-2
2.
Immunity ; 55(9): 1725-1731.e4, 2022 09 13.
Article in English | MEDLINE | ID: covidwho-2036138

ABSTRACT

Large-scale vaccination campaigns have prevented countless hospitalizations and deaths due to COVID-19. However, the emergence of SARS-CoV-2 variants that escape from immunity challenges the effectiveness of current vaccines. Given this continuing evolution, an important question is when and how to update SARS-CoV-2 vaccines to antigenically match circulating variants, similarly to seasonal influenza viruses where antigenic drift necessitates periodic vaccine updates. Here, we studied SARS-CoV-2 antigenic drift by assessing neutralizing activity against variants of concern (VOCs) in a set of sera from patients infected with viral sequence-confirmed VOCs. Infections with D614G or Alpha strains induced the broadest immunity, whereas individuals infected with other VOCs had more strain-specific responses. Omicron BA.1 and BA.2 were substantially resistant to neutralization by sera elicited by all other variants. Antigenic cartography revealed that Omicron BA.1 and BA.2 were antigenically most distinct from D614G, associated with immune escape, and possibly will require vaccine updates to ensure vaccine effectiveness.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Antigens, Viral/genetics , COVID-19 Vaccines , Humans , SARS-CoV-2/genetics
3.
Vaccine ; 40(32): 4424-4431, 2022 07 30.
Article in English | MEDLINE | ID: covidwho-1882610

ABSTRACT

BACKGROUND: Symptoms of post-acute sequelae of COVID-19 (PASC) may improve following SARS-CoV-2 vaccination. However few prospective data that also explore the underlying biological mechanism are available. We assessed the effect of vaccination on symptomatology of participants with PASC, and compared antibody dynamics between those with and without PASC. METHODS: RECoVERED is a prospective cohort study of adult patients with mild to critical COVID-19, enrolled from illness onset. Among participants with PASC, vaccinated participants were exact-matched 1:1 on age, sex, obesity status and time since illness onset to unvaccinated participants. Between matched pairs, we compared the monthly mean numbers of symptoms over a 3-month follow-up period, and, using exact logistic regression, the proportion of participants who fully recovered from PASC. Finally, we assessed the association between PACS status and rate of decay of spike- and RBD-binding IgG titers up to 9 months after illness onset using Bayesian hierarchical linear regression. FINDINGS: Of 349 enrolled participants, 316 (90.5%) had ≥3 months of follow-up, of whom 186 (58.9%) developed PASC. Among 36 matched pairs with PASC, the mean number of symptoms reported each month during 3 months of follow-up were comparable between vaccinated and unvaccinated groups. Odds of full recovery from PASC also did not differ between matched pairs (OR 1.57 [95%CI 0.46-5.84]) within 3 months after the matched time-point. The median half-life of spike- and RBD-binding IgG levels were, in days (95%CrI), 233 (183-324) and 181 (147-230) among participants with PASC, and 170 (125-252) and 144 (113-196) among those without PASC, respectively. INTERPRETATION: Our study found no strong evidence to suggest that vaccination improves symptoms of PASC. This was corroborated by comparable spike- and RBD-binding IgG waning trajectories between those with and without PASC, refuting any immunological basis for a therapeutic effect of vaccination on PASC.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Bayes Theorem , COVID-19/prevention & control , Humans , Immunoglobulin G , Prospective Studies , SARS-CoV-2 , Vaccination
4.
PLoS Med ; 19(5): e1003991, 2022 05.
Article in English | MEDLINE | ID: covidwho-1846918

ABSTRACT

BACKGROUND: Emerging and future SARS-CoV-2 variants may jeopardize the effectiveness of vaccination campaigns. Therefore, it is important to know how the different vaccines perform against diverse SARS-CoV-2 variants. METHODS AND FINDINGS: In a prospective cohort of 165 SARS-CoV-2 naive health care workers in the Netherlands, vaccinated with either one of four vaccines (BNT162b2, mRNA-1273, AZD1222 or Ad26.COV2.S), we performed a head-to-head comparison of the ability of sera to recognize and neutralize SARS-CoV-2 variants of concern (VOCs; Alpha, Beta, Gamma, Delta and Omicron). Repeated serum sampling was performed 5 times during a year (from January 2021 till January 2022), including before and after booster vaccination with BNT162b2. Four weeks after completing the initial vaccination series, SARS-CoV-2 wild-type neutralizing antibody titers were highest in recipients of mRNA-1273, followed by recipients of BNT162b2 (geometric mean titers (GMT) of 358 [95% CI 231-556] and 214 [95% CI 153-299], respectively; p<0.05), and substantially lower in those vaccinated with the adenovirus vector-based vaccines AZD1222 and Ad26.COV2.S (GMT of 18 [95% CI 11-30] and 14 [95% CI 8-25] IU/ml, respectively; p<0.001). VOCs neutralization was reduced in all vaccine groups, with the greatest reduction in neutralization GMT observed against the Omicron variant (fold change 0.03 [95% CI 0.02-0.04], p<0.001). The booster BNT162b2 vaccination increased neutralizing antibody titers for all groups with substantial improvement against the VOCs including the Omicron variant. We used linear regression and linear mixed model analysis. All results were adjusted for possible confounding of age and sex. Study limitations include the lack of cellular immunity data. CONCLUSIONS: Overall, this study shows that the mRNA vaccines appear superior to adenovirus vector-based vaccines in inducing neutralizing antibodies against VOCs four weeks after initial vaccination and after booster vaccination, which implies the use of mRNA vaccines for both initial and booster vaccination.


Subject(s)
COVID-19 , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , Ad26COVS1 , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Cohort Studies , Health Personnel , Humans , Netherlands/epidemiology , Prospective Studies , SARS-CoV-2/genetics
5.
Open forum infectious diseases ; 9(5), 2022.
Article in English | EuropePMC | ID: covidwho-1782264

ABSTRACT

Background Severe fatigue can persist for months after coronavirus disease 2019 (COVID-19) onset. This longitudinal study describes fatigue severity and its determinants up to 12 months after illness onset across the full spectrum of COVID-19 severity. Methods RECoVERED, a prospective cohort study in Amsterdam, the Netherlands, enrolled participants aged ≥16 years after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnosis. Fatigue was measured using the validated Short Fatigue Questionnaire (SFQ;range 4–28) at months 1, 3, 6, 9, and 12 of follow-up. Fatigue severity was modeled over time using mixed-effects linear regression. Determinants of severe fatigue (SFQ ≥18) at 6 months since illness onset (ie, persistent fatigue) were identified using logistic regression. Results Between May 2020 and July 2021, 303 participants completed at least 1 fatigue questionnaire. Twelve months after illness onset, 17.4% (95% CI, 6.7% to 38.3%), 21.6% (95% CI, 11.2% to 37.7%), and 44.8% (95% CI, 28.0% to 62.9%) of participants with mild, moderate, and severe/critical COVID-19 (World Health Organization definition), respectively, experienced severe fatigue. When adjusting for age and sex, having ≥3 comorbidities (P = .007), severe/critical COVID-19 (P = .002), low mood (P < .001), and dyspnea in the first 2 weeks of illness (P = .001) were associated with more severe fatigue over time. Severe/critical COVID-19 (adjusted odds ratio [aOR], 3.37;95% CI, 1.28 to 8.93) and low mood at enrollment (aOR, 2.43;95% CI, 1.11 to 5.29) were associated with persistent fatigue. Recovery rarely occurred beyond 6 months after illness onset, regardless of COVID-19 severity. Conclusions The occurrence of severe fatigue in our cohort was high, especially among those with initially severe/critical COVID-19, with little recovery beyond 6 months after illness onset. Our findings highlight an urgent need for improved understanding of persistent severe fatigue following COVID-19 to help inform prevention and intervention.

6.
Clin Infect Dis ; 75(1): e482-e490, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1699566

ABSTRACT

BACKGROUND: Few robust longitudinal data on long-term coronavirus disease 2019 (COVID-19) symptoms are available. We evaluated symptom onset, severity and recovery across the full spectrum of disease severity, up to one year after illness onset. METHODS: The RECoVERED Study is a prospective cohort study based in Amsterdam, the Netherlands. Participants aged ≥18 years were enrolled following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnosis via the local public health service and from hospitals. Standardized symptom questionnaires were completed at enrollment, 1 week and month later, and monthly thereafter. Clinical severity was defined according to World Health Organization (WHO) criteria. Kaplan-Meier methods were used to compare time from illness onset to symptom recovery, by clinical severity. We examined determinants of time to recovery using multivariable Cox proportional hazards models. RESULTS: Between 11 May 2020 and 1 May 2021, 342 COVID-19 patients (192 [56%] male) were enrolled, of whom 99/342 (29%) had mild, 145/342 (42%) moderate, 56/342 (16%) severe, and 42/342 (12%) critical disease. The proportion of participants who reported at least 1 persistent symptom at 12 weeks after illness onset was greater in those with severe/critical disease (86.7% [95% confidence interval {CI} = 76.5-92.7%]) compared to those with mild or moderate disease (30.7% [95% CI = 21.1-40.9%] and 63.8% [95% CI = 54.8-71.5%], respectively). At 12 months after illness onset, two-fifths of participants (40.7% [95% CI = 34.2-7.1]) continued to report ≥1 symptom. Recovery was slower in female compared to male participants (adjusted hazard ratio [aHR] 0.65 [95% CI = .47-.92]) and those with a body mass index [BMI]  ≥30kg/m2 compared to BMI <25kg/m2 (hazard ratio [HR] 0.62 [95% CI = .39-.97]). CONCLUSIONS: COVID-19 symptoms persisted for one year after illness onset, even in some individuals with mild disease. Female sex and obesity were the most important determinants of speed of recovery from symptoms.


Subject(s)
COVID-19 , Adolescent , Adult , COVID-19/diagnosis , Female , Humans , Male , Proportional Hazards Models , Prospective Studies , SARS-CoV-2 , Severity of Illness Index
7.
Cell Rep Med ; 3(1): 100486, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1569129

ABSTRACT

The urgent need for, but limited availability of, SARS-CoV-2 vaccines worldwide has led to widespread consideration of dose-sparing strategies. Here, we evaluate the SARS-CoV-2-specific antibody responses following BNT162b2 vaccination in 150 previously SARS-CoV-2-infected individuals from a population-based cohort. One week after first vaccine dose, spike protein antibody levels are 27-fold higher and neutralizing antibody titers 12-fold higher, exceeding titers of fully vaccinated SARS-CoV-2-naive controls, with minimal additional boosting after the second dose. Neutralizing antibody titers against four variants of concern increase after vaccination; however, overall neutralization breadth does not improve. Pre-vaccination neutralizing antibody titers and time since infection have the largest positive effect on titers following vaccination. COVID-19 severity and the presence of comorbidities have no discernible impact on vaccine response. In conclusion, a single dose of BNT162b2 vaccine up to 15 months after SARS-CoV-2 infection offers higher neutralizing antibody titers than 2 vaccine doses in SARS-CoV-2-naive individuals.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine/immunology , SARS-CoV-2/immunology , Vaccination/methods , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , COVID-19/virology , Female , Follow-Up Studies , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Neutralization Tests , Prospective Studies , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology , Treatment Outcome
8.
Elife ; 102021 11 23.
Article in English | MEDLINE | ID: covidwho-1529013

ABSTRACT

Current SARS-CoV-2 vaccines are losing efficacy against emerging variants and may not protect against future novel coronavirus outbreaks, emphasizing the need for more broadly protective vaccines. To inform the development of a pan-coronavirus vaccine, we investigated the presence and specificity of cross-reactive antibodies against the spike (S) proteins of human coronaviruses (hCoV) after SARS-CoV-2 infection and vaccination. We found an 11- to 123-fold increase in antibodies binding to SARS-CoV and MERS-CoV as well as a 2- to 4-fold difference in antibodies binding to seasonal hCoVs in COVID-19 convalescent sera compared to pre-pandemic healthy donors, with the S2 subdomain of the S protein being the main target for cross-reactivity. In addition, we detected cross-reactive antibodies to all hCoV S proteins after SARS-CoV-2 vaccination in macaques and humans, with higher responses for hCoV more closely related to SARS-CoV-2. These findings support the feasibility of and provide guidance for development of a pan-coronavirus vaccine.


Subject(s)
COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Viral/blood , Coronavirus/immunology , Cross Reactions/immunology , Healthy Volunteers , Humans , Immunoglobulin G/immunology , Macaca , Middle East Respiratory Syndrome Coronavirus/immunology , Principal Component Analysis , Protein Domains/immunology , Serum/immunology , Serum/virology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Tetanus Toxoid/immunology , mRNA Vaccines/immunology
9.
BMC Public Health ; 21(1): 1721, 2021 09 22.
Article in English | MEDLINE | ID: covidwho-1435239

ABSTRACT

BACKGROUND: It is important to gain insight into the burden of COVID-19 at city district level to develop targeted prevention strategies. We examined COVID-19 related hospitalisations by city district and migration background in the municipality of Amsterdam, the Netherlands. METHODS: We used surveillance data on all PCR-confirmed SARS-CoV-2 hospitalisations in Amsterdam until 31 May 2020, matched to municipal registration data on migration background. We calculated directly standardised (age, sex) rates (DSR) of hospitalisations, as a proxy of COVID-19 burden, per 100,000 population by city district and migration background. We calculated standardised rate differences (RD) and rate ratios (RR) to compare hospitalisations between city districts of varying socio-economic and health status and between migration backgrounds. We evaluated the effects of city district and migration background on hospitalisation after adjusting for age and sex using Poisson regression. RESULTS: Between 29 February and 31 May 2020, 2326 cases (median age 57 years [IQR = 37-74]) were notified in Amsterdam, of which 596 (25.6%) hospitalisations and 287 (12.3%) deaths. 526/596 (88.2%) hospitalisations could be matched to the registration database. DSR were higher in individuals living in peripheral (South-East/New-West/North) city districts with lower economic and health status, compared to central districts (Centre/West/South/East) (RD = 36.87,95%CI = 25.79-47.96;RR = 1.82,95%CI = 1.65-1.99), and among individuals with a non-Western migration background compared to ethnic-Dutch individuals (RD = 57.05,95%CI = 43.34-70.75; RR = 2.36,95%CI = 2.17-2.54). City district and migration background were independently associated with hospitalisation. CONCLUSION: City districts with lower economic and health status and those with a non-Western migration background had the highest burden of COVID-19 during the first wave of COVID-19 in Amsterdam.


Subject(s)
COVID-19 , Ethnicity , Hospitalization , Humans , Middle Aged , Netherlands/epidemiology , SARS-CoV-2
10.
Sci Adv ; 7(36): eabj5365, 2021 Sep 03.
Article in English | MEDLINE | ID: covidwho-1403006

ABSTRACT

Emerging SARS-CoV-2 variants of concern (VOCs) pose a threat to human immunity induced by natural infection and vaccination. We assessed the recognition of three VOCs (B.1.1.7, B.1.351, and P.1) in cohorts of COVID-19 convalescent patients (n = 69) and Pfizer-BioNTech vaccine recipients (n = 50). Spike binding and neutralization against all three VOCs were substantially reduced in most individuals, with the largest four- to sevenfold reduction in neutralization being observed against B.1.351. While hospitalized patients with COVID-19 and vaccinees maintained sufficient neutralizing titers against all three VOCs, 39% of nonhospitalized patients exhibited no detectable neutralization against B.1.351. Moreover, monoclonal neutralizing antibodies show sharp reductions in their binding kinetics and neutralizing potential to B.1.351 and P.1 but not to B.1.1.7. These data have implications for the degree to which pre-existing immunity can protect against subsequent infection with VOCs and informs policy makers of susceptibility to globally circulating SARS-CoV-2 VOCs.

SELECTION OF CITATIONS
SEARCH DETAIL